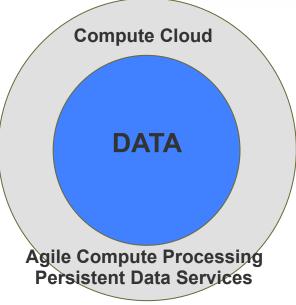


ABoVE Science Cloud Support for the Pre-ABoVE Projects

NASA Center for Climate Simulation (NCCS) Code 606.2 Carbon Cycle & Ecosystems Office Mark Carroll (Code 618) Tatiana Loboda (University of Maryland)

Goal and Concept



Goal

 Demonstrate support for the ABoVE field campaign and the Carbon Cycle and Ecosystems Office by providing direct support for the five pre-ABoVE projects <u>http://above.nasa.gov/</u>

Concept

- Unified Data Analysis Platform that provides a co-location of data, compute, data management, and data services
- Provided by the NASA Center for Climate Simulation (Code 606.2) in Building 28 at Goddard Space Flight Center
 Data storage surrounded by a compute cloud
- Large amount of data storage, high performance compute capabilities, very high speed interconnects

Proposed Capabilities for Pre-ABoVE Support

Storage

- Start by using existing data service storage servers (possibly augment)
- Petabytes of disk storage

Compute

- Make use of existing servers that are being upgraded
 - 11 Dell C6100 Nodes
 - Dual-socket, hex-core 2.8 GHz Intel Xeon Westmere processors
 - 11x12 = 121 total cores
 - 24 GB of RAM per node
- Infiniband interconnect for internal network
- 1 GbE for external network (to start with)
- System is architected to be easily expanded for future requirements
- Housed in building 28 data center
- Falls under existing NCCS security plan

Example Software Stacks and Responsibilities

CentOS (Linux)

Application	Custom Science App		Application	Persistent Data Service		
Commercial	IDL, Matlab		Commercial	IDL, Matlab		
Libraries/Tools	e.g. R, Python, HDF, GDAL, Geotiff, NetCDF		Libraries/Tools	e.g. R, Python, HDF, GDAL, Geotiff, NetCDF		
File System	RedHat Gluster		File System	RedHat Gluster		
Interconnect	OpenIB and TCP/IP		Interconnect	OpenIB and TCP/IP		
Guest VM	Linux (Debian, Centos, Windows)		Guest VM	Linux (Debian, Centos, Windows)		
File System			RedHat Gluster		Responsibilities	
Hypervisor			KVM			Scientists
Internal Interconnect		Op	Open Fabrics Infiniband (OpenIB)			NCCS

National Aeronautics and Space Administration

Operating System

Simple Concept Of Operations

Principal Investigators and Users will

- Identify data sets to be copied into the science cloud and get support for data management, metadata, naming conventions, etc.
- Have use of private "virtual machine" work environments to run their own code and generate products for their own use and evaluation
- Bring their algorithms to the compute cloud
- Manage those algorithms in the cloud
- Manage the outputs and results of the algorithms
- Receive assistance for the creation and management of persistent data services when data products are ready to be shared within the team and to outside partners

Simple Concept Of Operations

- Science Cloud will
- Support account creation
- Manage private virtual machines for the scientists
- •Support the movement of data into the cloud
- •Provide support for the scientists on accessing and processing in the science cloud
- •Support the creation and management of persistent data services within the compute cloud
- •Assist users in trouble shooting in the event of errors with processing data
- •Provide guidance for the creation, search, discover, and use of metadata

Science Benefit of a Science Cloud

Carroll et al Landsat water maps for 3 epochs:

- Expanded storage availability allowing denser stacks of data (expanding temporally into shoulder seasons)
- ◆Data processing times cut down from 6 9 months to 6 10 weeks
- Extra time to be used for expansion of QA/verification of products
- Expansion of the region from the "tier 1 primary region" into tier's 2 and 3 as outlined in proposal, including the expanded High Arctic region defined by the SDT
- Enables possible expansion of the time domain, in the future, from epochs to full time series of all available data

Science Benefit of a Science Cloud

Loboda et al MODIS cloud dynamics and burned area mapping

- Dramatically reduces download time by utilizing multiple high speed connections simultaneously
- Data processing times will be reduced by
 - No need to cycle through inputs, all can stay online at once
 - Multiple instances can be run simultaneously
- Enables the option for reprocessing as the algorithm evolves
- Extra time for QA/verification of the products
- Accelerates completion of circumpolar data product
- Solves data storage and data management issues freeing up personnel time
- Reduction of effort because Loboda will also use the Landsat from Carroll

Science Benefit of a Science Cloud

- Walker et al Alaska Vegetation Atlas is being carefully created with assistance from GINA (Geographic Information Atlas of Alaska). It would be a test-case for "Data as a Service" linkages between GINA and the ABoVE Science Cloud
- ReSalt and CO2 data assimilation framework: Investigators have been contacted about formatting and metadata creation for sharing of their products upon completion
- Enhance CCE Office use of ESRI ArcGIS and exploration of RAMADDA
 - Desktop on super fast hardware with essentially unlimited disk storage
 - Online (in ESRI's cloud) becomes Portal (in ABoVE Science Cloud)
 - Data as a Service via ArcGIS Server

Discussion of Implications

ABoVE Concise Experiment Plan

Remote sensing activities during ABoVE will include:

- 1. Use of existing information products from satellite and airborne RS data;
- 2. Use of proven methodologies to create additional information products from historical archives of satellite and airborne RS data; and
- 3. Use field observations to develop, calibrate, and/or validate new information products from existing and new airborne and spaceborne and airborne remote sensors.

ABoVE NRA in ROSES 14

Assessment of performance and long term availability by June 2014